Докажите что квадрат среднего из трех последовательных нечетных чисел ** 4 больше...

0 голосов
32 просмотров

Докажите что квадрат среднего из трех последовательных нечетных чисел на 4 больше произведения двух крайних чисел


Алгебра (26 баллов) | 32 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

2к-1, 2к+1, 2к+3 три последовательные нечётные числа. Найдём разность между квадратом среднего числа и произведением двух крайних чисел 4k^2+4k+1-(2k-1)*(2k+3)=4k^2+4k+1-4k^2-6k+2k+3=4, а это значит, что квадрат среднего числа на 4 больше произведения двух средних чисел

(40.6k баллов)
0

А что за знак ^

0

возведение в степень, в данном случае -- возведение в квадрат. Не знали?