Трапеция АВСД: ВС=10, АД=90, диагонали АС=35 и ВД=75.
Из точки С проведем прямую СК, параллельную диагонали ВД, до пересечения с продолжением стороны АД (К - точка пересечения СК и АД).
Четырехугольник ВСКД - параллелограмм, т.к. ВС||ДК, ВД||СК
ВС=ДК=10, ВД=СК=75
АК=АД+ДК=90+10=100
Найдем площадь треугольника АСК по ф.Герона:
полупериметр р=(АС+СК+АК)/2=(35+75+100)/2=210/2=105
Sаск=√р(р-АС)(р-СК)(р-АК)=√105*70*30*5=1050
Если опустить высоту СН на основание АД, то она является и высотой ΔАСК, и высотой трапеции АВСД
Площадь треугольника можно записать Sаск=АК*СН/2=(АД+ВС)*СН/2= Sавсд
Ответ:1050