Запись некоторого натурального числа x в шестнадцатиричной системе счисления емеет ровно...

0 голосов
54 просмотров

Запись некоторого натурального числа x в шестнадцатиричной системе счисления емеет ровно три значащих разряда.Это число увеличили в два раза,и оказалось,что запись получившегося числа Y в шестнадцатиричной системе также имеет ровно три значащих разряда,причем сумма цифр шестнадцатиричной записи исходного числа x равна сумме цифр шестнадцатиричной записи полученного числа Y . Сколько существует таких чисел x ,которые удовлетворяют указанным условиям и при этом содержат хотя бы одну цифру 2 в своей шестнадцатиричной записи? в ответе укажите целое число


Информатика (15 баллов) | 54 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

N = X1*256 + Y1*16 + Z1
2N = X2*256 + Y2*16 + Z2
X1 + Y1 + Z1 = X2 + Y2 + Z2

Во-первых, X1 < 8, иначе число 2N в 16-ной записи станет 4-значным.
Можно написать такую программу поиска этих чисел
Начало
k = 0 ' Это счетчик чисел, которые мы ищем
Цикл по X1 от 1 до 7
    Цикл по Y1 от 0 до 15
        Цикл по Z1 от 0 до 15
            N = X1*256 + Y1*16 + Z1
            M = 2*N
            X2 = Int (M / 256)
            Y2 = Int ((M - X2*256) / 16)
            Z2 = M Mod 16
            Если (X1+Y1+Z1 = X2+Y2+Z2) And ((X1 = 2) Or (Y1 = 2) Or (Z1 = 2), То
                k = k + 1
            Конец Если
        Конец цикла по Z1
    Конец цикла по Y1
Конец цикла по X1
Вывод k
Конец

(320k баллов)