![image](https://tex.z-dn.net/?f=1%29+3cosx%3D-2%281-cos%5E2%28x%29%29%5C%5C+2cos%5E2%28x%29-3cos%282x%29-2%3D0%5C%5C+cos%28x%29%3Dt+%5C%5C+2t%5E2-3t-2%3D0+%5C%5C+D%3D9%2B16%3D25%3D5%5E2+%5C%5C+t_1%3D%283%2B5%29%2F4%3D2+%3E1+%5C%5C+t_2%3D%283-5%29%2F4%3D-1%2F2+%5C%5C+cos%28x%29%3D-1%2F2+%5C%5C+x%3D%2B-%282+%5Cpi+%2F3%29%2B+2+%5Cpi+n)
1 \\ t_2=(3-5)/4=-1/2 \\ cos(x)=-1/2 \\ x=+-(2 \pi /3)+ 2 \pi n" alt="1) 3cosx=-2(1-cos^2(x))\\ 2cos^2(x)-3cos(2x)-2=0\\ cos(x)=t \\ 2t^2-3t-2=0 \\ D=9+16=25=5^2 \\ t_1=(3+5)/4=2 >1 \\ t_2=(3-5)/4=-1/2 \\ cos(x)=-1/2 \\ x=+-(2 \pi /3)+ 2 \pi n" align="absmiddle" class="latex-formula">
![image](https://tex.z-dn.net/?f=%0A++2%29+cos4x-cos12x%3D0+%5C%5C+-2%2Asin%28+%5Cfrac%7B4x%2B12x%7D%7B2%7D+%29%2Asin+%28+%5Cfrac+%7B4x-12x%7D%7B2%7D%29%3D0+%5C%5C+sin8x+%2A+sin4x%3D0+%5C%5C+a%29+sin4x%3D0+%3C%3D%3E+4x%3D+%5Cpi+m+%3C%3D%3E+x%3D+%5Cpi+m%2F4%5C%5C+b%29+++sin8x%3D0+%3C%3D%3E+8x%3D+%5Cpi+m+%3C%3D%3E+x%3D+%5Cpi+m%2F8)
4x= \pi m <=> x= \pi m/4\\ b) sin8x=0 <=> 8x= \pi m <=> x= \pi m/8" alt="
2) cos4x-cos12x=0 \\ -2*sin( \frac{4x+12x}{2} )*sin ( \frac {4x-12x}{2})=0 \\ sin8x * sin4x=0 \\ a) sin4x=0 <=> 4x= \pi m <=> x= \pi m/4\\ b) sin8x=0 <=> 8x= \pi m <=> x= \pi m/8" align="absmiddle" class="latex-formula">
Замечаем, что первая серию целиком входит во вторую, поэтому в ответе пишем только:
![image](https://tex.z-dn.net/?f=+3%29+sinx%3D-sin3x+%5C%5C+sinx%2Bsin3x%3D0+%5C%5C+2sin%28x%2B3x%29%2F2+%2A+cos%28x-3x%29%2F2%3D0+%5C%5C+sin2x%2Acosx%3D0%5C%5C+a%29+sin2x%3D0+%5C%5C+2x%3D+%5Cpi+m+%5C%5C+x%3D+%5Cpi+m+%2F2+%5C%5C+b%29+cosx%3D0+%3C%3D%3E+x%3D%5Cpi%2F2+%2B+%5Cpi+k)
x=\pi/2 + \pi k" alt=" 3) sinx=-sin3x \\ sinx+sin3x=0 \\ 2sin(x+3x)/2 * cos(x-3x)/2=0 \\ sin2x*cosx=0\\ a) sin2x=0 \\ 2x= \pi m \\ x= \pi m /2 \\ b) cosx=0 <=> x=\pi/2 + \pi k" align="absmiddle" class="latex-formula">
Замечаем, что вторая серия целиком входит в первую, поэтому в ответе будет только
![x=\pi*m/2 x=\pi*m/2](https://tex.z-dn.net/?f=x%3D%5Cpi%2Am%2F2)
.