Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в...

0 голосов
72 просмотров

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй- в точке B. Найдите площадь треугольника AKB, если известно, что радиусы окружности равны 4 и 1.


Геометрия (76 баллов) | 72 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Первое, что нетрудно доказывается, --- треугольник АВК прямоугольный.
Площадь прямоугольного треугольника = половине произведения катетов)))
гипотенуза АВ = 4 --это очевидно из получившейся трапеции...
а чтобы найти катеты не хватает известных углов)))
на рисунке есть два равных треугольника:
треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу)))
из этого очевидно: АК = 2*КВ
по т.Пифагора
4х² + х² = 16  --->  5x² = 16
S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2


image
(236k баллов)