Обозначим друзей цифрами 1, 2, 3, 4, 5. Рассмотрим все возможные варианты рукопожатий:
12 13 14 15
23 24 25
34 35
45
Всего получилось 4+3+2+1=10 рукопожатий. Заметим, что 12 и 21 — это одно и то же рукопожатие, поэтому оно считается один раз, а не два.
По формулам комбинаторики эту задачу можно решить быстрее: каждый из 5 друзей пожал руку каждому из 4 остальных, но при этом каждое рукопожатие мы сосчитали дважды. Значит, получилось всего рукопожатий.