Найдите двузначное число, учитывая, что сумма цифр его равна 12, а частные от деления...

0 голосов
26 просмотров

Найдите двузначное число, учитывая, что сумма цифр его равна 12, а частные от деления самого числа на12 и обращенного на 21 равны:
1307 - само число
7031 - обращенное число


Математика (16 баллов) | 26 просмотров
Дан 1 ответ
0 голосов

Представим двузначное число в виде 10a+b, где а от 1 до 9, а b от 0 до 9.
a+b=11
и (10a+b)/14=4/5*(10b+a)/13  (тут 4/5=0.8=80%)
перенесем знаменатели и раскроем скобки
(10a+b)*5*13=14*4*(10b+a)
т.е. 650a+65b=560b+56a или 594a=495b
вспомним, что a=11-b и подставим:
594(11-b)=495b
получим 6534-594b=495b или 1089b=6534 => b =6. a=5. Число 56.

(43 баллов)