Найдите tg4a,если tg2a=0,4

0 голосов
82 просмотров

Найдите tg4a,если tg2a=0,4


Алгебра | 82 просмотров
Дан 1 ответ
0 голосов

 Есть формула:

tg2a=\frac{2tga}{1+tg^2a}

Дальше все просто. 

В нашем примере обозначим 2а как х, т.е 2а=х, тогда надо найти tg2x, если известно, что tgx=0.4. Воспользуемся этой формулой:

tg2x=\frac{2tgx}{1+tg^2x} \\ tg2x=\frac{2\cdot 0.4}{1+0.4^2}=\frac{0.8}{1.16}=\frac{8}{10} : \frac{116}{100}= \\=\frac{8}{10} \cdot \frac{100}{116}=\frac{20}{29}

 

 

Ответ:  tg4a=\frac{20}{29}

 

 

 

 

 

 

 

(998 баллов)