Решите уравнение (cos3xcos5x+|sin3xsin5x|)/sin2x=2cos2x. Найдите сумму S его решений **...

0 голосов
101 просмотров

Решите уравнение
(cos3xcos5x+|sin3xsin5x|)/sin2x=2cos2x.
Найдите сумму S его решений на промежутке [0,2π).


Алгебра (1.4k баллов) | 101 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Область определения
sin 2x =/= 0; 2x =/= pi*k; x =/= pi/2*k
Раскрываем модуль
1) sin 3x*sin 5x < 0, тогда |sin 3x*sin 5x| = -sin 3x*sin 5x
Это может быть в двух случаях, когда синусы имеют разные знаки
Но решать это долго и трудно, проще решить уравнение, а потом подставить корни и проверить.
(cos 3x*cos 5x - sin 3x*sin 5x) / sin 2x = 2cos 2x
cos(3x + 5x) = 2cos 2x*sin 2x
cos 8x = sin 4x
1 - 2sin^2 (4x) = sin (4x)
2sin^2 (4x) + sin (4x) - 1 = 0
(sin (4x) + 1)(2sin (4x) - 1) = 0
a) sin 4x = -1; 4x = 3pi/2 + 2pi*k; x1 = 3pi/8 + pi/2*k
Проверяем при k = 0
sin 3x = sin (9pi/8) = -0,3826 < 0
sin 5x = sin (15pi/8) = -0,3826 < 0
При k = 1
sin 3x = sin (9pi/8 + 3pi/2) = sin (21pi/8) = 0,9238 > 0
sin 5x = sin (15pi/8 + 5pi/2) = sin (35pi/8) = 0,9238 > 0
Этот корень не подходит, потому что sin 3x*sin 5x > 0
b) sin 4x = 1/2;
4x = pi/6 + 2pi*n; x2 = pi/24 + pi/2*n
4x = 5pi/6 + 2pi*n; x3 = 5pi/24 + pi/2*n
Эти корни проверьте сами.

2) sin 3x*sin 5x > 0, тогда |sin 3x*sin 5x| = sin 3x*sin 5x
(cos 3x*cos 5x + sin 3x*sin 5x) / sin 2x = 2cos 2x
cos 2x / sin 2x = 2cos 2x
cos 2x = 2cos 2x*sin 2x
cos 2x*(1 - 2sin 2x) = 0
a) cos 2x = 0; 2x = pi/2 + pi*k; x1 = pi/4 + pi/2*k
b) sin 2x = 1/2;
2x = pi/6 + 2pi*n; x2 = pi/12 + pi*n
2x = 5pi/6 + 2pi*n; x3 = 5pi/12 + pi*n
Эти три корня тоже проверьте сами.
Здесь должно быть sin 3x*sin 5x > 0

(320k баллов)