Найдите наибольшее значение функции y=x³+2x²+x+3 ** отрезке [−3;−0,5].

0 голосов
79 просмотров

Найдите наибольшее значение функции y=x³+2x²+x+3 на отрезке [−3;−0,5].


Математика (59 баллов) | 79 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
y=x^3+2x^2+x+3

1.  
Найдём производную функции:

y'=3x^2+4x+1

2.  Приравняем производную к нулю, чтобы найти точки экстремума функции.

3x^2+4x+1=0 \\ D=16-4*3=16-12=4 \\ \\ x_1= \frac{-4+2}{6} = \frac{-2}{6} =- \frac{1}{3} ~~~~~~~~~~~~~~~~~~~~~x_2= \frac{-4-2}{6} = \frac{-6}{6} =-1

3.  Смотрим, какой у нас промежуток  [-3;-0,5],   входят ли в него найденные точки.   Таким образом точка x=- \frac{1}{3}  лежит правее точки x=-0,5, поэтому её не рассматриваем.

4.  Подставляем точки   -3,~-1;~-0,5   вместо X в самое первое начальное уравнение и смотрим какие значения принимают Y, выделяем наибольшее и наименьшее.

y(-3)=(-3)^3+2\cdot (-3)^2-3+3=-27+18=-9 \\ y(-1)=(-1)^3+2\cdot(-1)^2-1+3=-1+2+2=3 \\ y(-0,5)=(-0,5)^3+2\cdot(-0,5)^2-0,5+3=-0,125+0,5+2,5= \\ =2,875

Ответ:  y наим. =-9,    y наиб. =3
(23.5k баллов)