[3п;9п/2] - это I, III и IV четверти.
![\cos\left(\frac{3\pi}2 -2x\right)=\sqrt 2\sin x\\\cos\left(\frac{3\pi}2-\alpha\right)=-\sin\alpha\\-\sin2x=\sqrt2\sin x\\-2\sin x\cos x=\sqrt2\sin x \cos\left(\frac{3\pi}2 -2x\right)=\sqrt 2\sin x\\\cos\left(\frac{3\pi}2-\alpha\right)=-\sin\alpha\\-\sin2x=\sqrt2\sin x\\-2\sin x\cos x=\sqrt2\sin x](https://tex.z-dn.net/?f=+%5Ccos%5Cleft%28%5Cfrac%7B3%5Cpi%7D2+-2x%5Cright%29%3D%5Csqrt+2%5Csin+x%5C%5C%5Ccos%5Cleft%28%5Cfrac%7B3%5Cpi%7D2-%5Calpha%5Cright%29%3D-%5Csin%5Calpha%5C%5C-%5Csin2x%3D%5Csqrt2%5Csin+x%5C%5C-2%5Csin+x%5Ccos+x%3D%5Csqrt2%5Csin+x)
Решение cos x = 0 в данном случае не подходит, т.к. в таком случае и sin x = 0, а такого быть не может.
Здесь возможно решение
. Тогда
![x=\pi n\\x\in\left[3\pi;\frac{9\pi}2\right]\Rightarrow\quad3\pi\leq\pi n\leq\frac{9\pi}2\\3\leq n\leq\frac92\Righarrow n=3,\quad n=4\\x=3\pi,\quad x=4\pi x=\pi n\\x\in\left[3\pi;\frac{9\pi}2\right]\Rightarrow\quad3\pi\leq\pi n\leq\frac{9\pi}2\\3\leq n\leq\frac92\Righarrow n=3,\quad n=4\\x=3\pi,\quad x=4\pi](https://tex.z-dn.net/?f=x%3D%5Cpi+n%5C%5Cx%5Cin%5Cleft%5B3%5Cpi%3B%5Cfrac%7B9%5Cpi%7D2%5Cright%5D%5CRightarrow%5Cquad3%5Cpi%5Cleq%5Cpi+n%5Cleq%5Cfrac%7B9%5Cpi%7D2%5C%5C3%5Cleq+n%5Cleq%5Cfrac92%5CRigharrow+n%3D3%2C%5Cquad+n%3D4%5C%5Cx%3D3%5Cpi%2C%5Cquad+x%3D4%5Cpi)
Если же
, то можно поделить обе части выражения на sin x:
![-2\cos x=\sqrt2\\\cos x=-\frac{\sqrt2}2\\x=\frac{3\pi}4+2\pi n,\quad x=\frac{5\pi}4+2\pi n\\ -2\cos x=\sqrt2\\\cos x=-\frac{\sqrt2}2\\x=\frac{3\pi}4+2\pi n,\quad x=\frac{5\pi}4+2\pi n\\](https://tex.z-dn.net/?f=-2%5Ccos+x%3D%5Csqrt2%5C%5C%5Ccos+x%3D-%5Cfrac%7B%5Csqrt2%7D2%5C%5Cx%3D%5Cfrac%7B3%5Cpi%7D4%2B2%5Cpi+n%2C%5Cquad+x%3D%5Cfrac%7B5%5Cpi%7D4%2B2%5Cpi+n%5C%5C)
Первый корень лежит во второй четверти значит, нам не походит.
![x\in\left[3\pi,\frac{9\pi}2\right]\Rightarrow\\ 3\pi\leq\frac{5\pi}4+2\pi n\leq\frac{9\pi}2\\ \frac{7\pi}4\leq2\pi n\leq\frac{13\pi}4\\ \frac{7\pi}8\leq\pi n\leq\frac{13\pi}8\\ \frac78\leq n\leq\frac{13}8\\n=1\\x=\frac{5\pi}4+2\pi=\frac{13\pi}4 x\in\left[3\pi,\frac{9\pi}2\right]\Rightarrow\\ 3\pi\leq\frac{5\pi}4+2\pi n\leq\frac{9\pi}2\\ \frac{7\pi}4\leq2\pi n\leq\frac{13\pi}4\\ \frac{7\pi}8\leq\pi n\leq\frac{13\pi}8\\ \frac78\leq n\leq\frac{13}8\\n=1\\x=\frac{5\pi}4+2\pi=\frac{13\pi}4](https://tex.z-dn.net/?f=x%5Cin%5Cleft%5B3%5Cpi%2C%5Cfrac%7B9%5Cpi%7D2%5Cright%5D%5CRightarrow%5C%5C+3%5Cpi%5Cleq%5Cfrac%7B5%5Cpi%7D4%2B2%5Cpi+n%5Cleq%5Cfrac%7B9%5Cpi%7D2%5C%5C+%5Cfrac%7B7%5Cpi%7D4%5Cleq2%5Cpi+n%5Cleq%5Cfrac%7B13%5Cpi%7D4%5C%5C+%5Cfrac%7B7%5Cpi%7D8%5Cleq%5Cpi+n%5Cleq%5Cfrac%7B13%5Cpi%7D8%5C%5C+%5Cfrac78%5Cleq+n%5Cleq%5Cfrac%7B13%7D8%5C%5Cn%3D1%5C%5Cx%3D%5Cfrac%7B5%5Cpi%7D4%2B2%5Cpi%3D%5Cfrac%7B13%5Cpi%7D4)
Итого на отрезке [3п;9п/2] уравнение имеет 3 решения:
![3\pi,\quad 4\pi,\quad\frac{13\pi}4 3\pi,\quad 4\pi,\quad\frac{13\pi}4](https://tex.z-dn.net/?f=3%5Cpi%2C%5Cquad+4%5Cpi%2C%5Cquad%5Cfrac%7B13%5Cpi%7D4)