Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 17:10,...

0 голосов
67 просмотров

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 17:10, считая от вершины. Найти периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 30


Геометрия (12 баллов) | 67 просмотров
Дан 1 ответ
0 голосов

Обозначим буквой О точку пересечения биссектрис и буквой К точку пересечения этой биссектрисы со стороной АВ.
Точкой пересечения биссектрисы делятся в отношении суммы сторон треугольника, образующих угол, в котором проведена биссектриса, к третьей стороне: 
imageТак как соотношение СО/ОК = 17/10, то [tex]\frac{AC+BC}{30}= \frac{17}{10} " alt=" \frac{CO}{OK} = [tex]\frac{AC+BC}{AB}. Так как соотношение СО/ОК = 17/10, то [tex]\frac{AC+BC}{30}= \frac{17}{10} " align="absmiddle" class="latex-formula">.
Отсюда сумма длин сторон АС+СВ = 3*17 = 51.
Тогда периметр треугольника равен 30 + 51 = 81.

(309k баллов)