Пусть в треугольнике ABC проведена биссектриса AD, при этом P(ABC)=36, P(ABD)=24, P(ACD)=30. Обозначим длину биссектрисы за x, тогда
AB+BC+AC=36,
AB+BD+x=24,
AC+CD+x=30.
Сложим последние два равенства:
AB+BD+x+AC+CD+x=54,
AB+AC+(BD+CD)+2x=54, BD+CD=BC
P(ABC)+2x=54,
36+2x=54,
x=9.
Таким образом, биссектриса равна 9.