Если известен периметр прямоугольника, можно ли однозначно установить его площадь?...

0 голосов
36 просмотров

Если известен периметр прямоугольника, можно ли однозначно установить его площадь? Объясните, почему площадь прямоугольника не будет зависеть от его периметра. А что можно сказать о зависимости площади квадрата от его периметра? Проиллюстрируй это на примере.


Математика (252 баллов) | 36 просмотров
Дан 1 ответ
0 голосов
Правильный ответ


Наибольшую площадь всегда занимает квадрат. Наглядно это видно из таблицы умножения - Пифагора (обычно ее печатают на обложке тетради). Площадь прямоугольника не связана напрямую с периметром. Поэтому, зная периметр, нельзя однозначно установить какие стороны у прямоугольника. Так как, находя площадь фигуры, мы оперируем значениями на плоскости (измерение проводим в квадратных единицах - метрах, сантиметрах и т.д.), периметр - это линейная характеристика фигуры ( длинна сторон - сумма отрезков, измеряется в сантиметрах, метрах и т.д.).

Например, для квадрата со стороной 5 см площадь 25 кв. см, периметр 20 см. Прямоугольник со сторонами 4 см и 6 см тоже имеет периметр 20 см, но площадь занимает меньше - 4*6=24 кв.см. Прямоугольник со сторонами 7 и 3 см тоже имеет периметр 20, однако его площадь еще меньше - это 21 кв.см. Для прямоугольника со сторонами 8 и 2 см: периметр  20 см, площадь - 16 кв.см. Для прямоугольника со сторонами 9 и 1 см: периметр тоже 20, площадь фигуры 9 кв. см. Чем больше разница между длинами сторон прямоугольника, тем меньше будет площадь такой фигуры.

(2.5k баллов)