Дан треугольник АВС. АВ=4, ВС=6,АС=7. Точка Ележит ** стороне АВ. Внутри Треугольника...

0 голосов
68 просмотров

Дан треугольник АВС. АВ=4, ВС=6,АС=7. Точка Ележит на стороне АВ. Внутри Треугольника взята точка М, так, что МВ=5,25; МЕ=4,5; АЕ=1. ВМ пересекает АС в точке Р. Докажите, что треугольник АРВ равнобедренный.


Геометрия (188 баллов) | 68 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

В треугольнике АВС (стороны АВ =4 АС=7 ВС=6)

cos(A) = (4^2 + 7^2 - 6^2)/(2*4*7) = 29/56; (теорема косинусов)

В треугольнике BME (стороны МЕ=4,5 МВ=5,25 ВЕ = АВ - АЕ =3)

cos(угол MBE) = (5,25^2 + 3^2 - 4,5^2)/(2*4*5,25) = 16,3125/31,5;

29/56 = (29*9)/(56*9) = 261/504;

16,3125/31,5 = (16,3125*16)/(31,5*16) = 261/504;

то есть косинусы этих углов равны, но это два угла в треугольнике АРВ. 

поэтому АР = ВР.

 

(69.9k баллов)