а)Здесь заменим cos²x, на 1 - sin²x по основному тригонометрическому тождлеству. Получаем:
6(1 - sin²x) + 7sin x - 8 = 0
6 - 6sin²x + 7sin x - 8 = 0
-6sin²x + 7sin x - 2 = 0
Пусть sin x = t, причём |t| ≤ 1, тогда
-6t² + 7t - 2 = 0
6t² - 7t + 2 = 0
D = 49 - 48 = 1
t1 = (7 - 1) / 12 = 6/12 = 1/2
t2 = (7 + 1) / 12 = 8/12 = 2/3
Приходим к совокупности двух уравнений:
sin x = 1/2 или sin x = 2/3
x = (-1)^k * π/6 + πn ,n∈Z x = (-1)^k arcsin 2/3 + πk, k∈Z
2)Данное уравнение является однородным второй степени. Будем решать его специальным образом. Разделим всё уравнение на cos²x, но сначала обоснуем, почему мы имеем правда делить на него.
Если бы cos² x был равен 0, то тогда при подставновке в уравнение получили бы соответственно
2sin²x + 0 - 0 = 0, то есть sin²x равен 0. Но этого не может быть, так как противоречит основному тригонометрическому тожелдству. Получили противоречие, следовательно, мы можем делить на cos²x. Теперь сделаем это:
2tg²x + tg x - 1 = 0
Введём замену. Пусть tg x = t, тогда
2t² + t - 1 = 0
D = 1 + 8 = 9
t1 = (-1 - 3) / 4 = -4/4 = -1
t2 = (-1 + 3) / 4 = 2/4 = 1/2
Приходим к совокупности уравнений:
tg x = -1 или tg x = 1/2
x = -π/4 + πn, n∈Z x = arctg 1/2 + πk, k∈Z
Это и есть корни данного уравнения.