Определить интервалы возрастания и убывания функции x^3/6-x^2

0 голосов
34 просмотров

Определить интервалы возрастания и убывания функции x^3/6-x^2


Алгебра (69 баллов) | 34 просмотров
Дан 1 ответ
0 голосов
y = x^3/6-x^2
f'(x) = 1/2x2-2x
или
f'(x) = 1/2x(x-4)
x(x-4) = 0
Откуда:
x1 = 0
x2 = 4
Далее:
В окрестности точки x = 0 производная функции меняет знак с (+) на (-). Следовательно, точка x = 0 - точка максимума. В окрестности точки x = 4 производная функции меняет знак с (-) на (+). Следовательно, точка x = 4 - точка минимума.

(238 баллов)
0

Огромное спасибо!)