Я вижу такое решение...
Если мы продолжим BO до пересечения AD (см. приложение), то получим угол BEA, который равен углу СBO - как накрест лежащий угол при параллельных прямых AD и BC. Мы знаем, что ∠AOB=180-(∠1+∠3). Но в треугольнике AOE: ∠5=∠1, а ∠4=∠3, значит, ∠AOE= 180-(∠5+∠4) = 180-(∠1+∠3) = ∠AOB. Но, ∠AOE и ∠AOB - смежные, значит, они оба равны 90°. P.S. Возможно, есть более рациональное доказательство...