Докажите ,что середины сторон произвольного четырехугольника ABCD являются вершинами...

0 голосов
62 просмотров

Докажите ,что середины сторон произвольного четырехугольника ABCD являются вершинами параллелограмма.


Геометрия (25 баллов) | 62 просмотров
Дан 1 ответ
0 голосов

Пусть ABCD — произвольный выпуклый четырехугольник, K, L, M и N — середины сторон AB, BC, CD и AD соответственно. Так как KL — средняя линия треугольника ABC, то прямая KL параллельна прямой AC и  Аналогично, прямая MN параллельна прямой AC и  Следовательно, KLMN — параллелограмм. Рассмотрим треугольник KBL. Его площадь равна четверти площади треугольника ABC. Площадь треугольника MDN также равна четверти площади треугольника ACD. Следовательно, 

Аналогично, 

Это значит, что 

откуда вытекает, что 

(69 баллов)