sina = 1/8 и 90
Известно (основное тригонометрическое тождество), что sin²(a) + cos²(a) = 1, значит cos(a) = ± sqrt(1 - sin²(a)), где sqrt — квадратный корень. В нашем случае 90 sin²(a) = (1/8)² = 1/64. -sqrt(1 - sin²(a)) = -sqrt(64/64 - 1/64) = -sqrt(63) / 8 = -3 * sqrt(7) / 8 = cos(a). tg(a) = sin(a) / cos(a) = -(1/8) / (3*sqrt(7) / 8) = -1 / (3 * sqrt(7)) = -sqrt(7) / (3 * 7) = -sqrt(7) / 21. ctg(a) = cos(a) / sin(a) = 1 / tg(a) = -3 * sqrt(7).
sin²(a) = (1/8)² = 1/64.
-sqrt(1 - sin²(a)) = -sqrt(64/64 - 1/64) = -sqrt(63) / 8 = -3 * sqrt(7) / 8 = cos(a).
tg(a) = sin(a) / cos(a) = -(1/8) / (3*sqrt(7) / 8) = -1 / (3 * sqrt(7)) = -sqrt(7) / (3 * 7) = -sqrt(7) / 21.
ctg(a) = cos(a) / sin(a) = 1 / tg(a) = -3 * sqrt(7).