1) ![\frac{5y-6}{4y^{2}-9}-\frac{3-3y}{3+2y}=\frac{3}{2y-3} \frac{5y-6}{4y^{2}-9}-\frac{3-3y}{3+2y}=\frac{3}{2y-3}](https://tex.z-dn.net/?f=%5Cfrac%7B5y-6%7D%7B4y%5E%7B2%7D-9%7D-%5Cfrac%7B3-3y%7D%7B3%2B2y%7D%3D%5Cfrac%7B3%7D%7B2y-3%7D)
отметим область допустимых значений
![\begin{cases} 4y^{2}-9\neq0\\3+2y\neq0\\2y-3\neq0 \end{cases} \begin{cases} 4y^{2}-9\neq0\\3+2y\neq0\\2y-3\neq0 \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D+4y%5E%7B2%7D-9%5Cneq0%5C%5C3%2B2y%5Cneq0%5C%5C2y-3%5Cneq0+%5Cend%7Bcases%7D)
перенесём всё в левую часть, при этом не забываем сменить знак на противоположный
![\frac{5y-6}{4y^{2}-9}-\frac{3-3y}{3+2y}-\frac{3}{2y-3}=0 \frac{5y-6}{4y^{2}-9}-\frac{3-3y}{3+2y}-\frac{3}{2y-3}=0](https://tex.z-dn.net/?f=%5Cfrac%7B5y-6%7D%7B4y%5E%7B2%7D-9%7D-%5Cfrac%7B3-3y%7D%7B3%2B2y%7D-%5Cfrac%7B3%7D%7B2y-3%7D%3D0)
воспользуемся формулой разности квадратов
![\frac{5y-6}{(2y-3)(2y+3)}-\frac{3-3y}{2y+3}-\frac{3}{2y-3}=0 \frac{5y-6}{(2y-3)(2y+3)}-\frac{3-3y}{2y+3}-\frac{3}{2y-3}=0](https://tex.z-dn.net/?f=%5Cfrac%7B5y-6%7D%7B%282y-3%29%282y%2B3%29%7D-%5Cfrac%7B3-3y%7D%7B2y%2B3%7D-%5Cfrac%7B3%7D%7B2y-3%7D%3D0)
приравниваем дроби к общему знаменателю
![\frac{5y-6-(3-3y)(2y-3)-3(2y+3)}{(2y-3)(2y+3)}=0 \frac{5y-6-(3-3y)(2y-3)-3(2y+3)}{(2y-3)(2y+3)}=0](https://tex.z-dn.net/?f=%5Cfrac%7B5y-6-%283-3y%29%282y-3%29-3%282y%2B3%29%7D%7B%282y-3%29%282y%2B3%29%7D%3D0)
поочерёдно раскрываем скобки
![\frac{5y-6-(6y-9-6y^{2}+9y)-6y-9}{(2y-3)(2y+3)}=0 \frac{5y-6-(6y-9-6y^{2}+9y)-6y-9}{(2y-3)(2y+3)}=0](https://tex.z-dn.net/?f=%5Cfrac%7B5y-6-%286y-9-6y%5E%7B2%7D%2B9y%29-6y-9%7D%7B%282y-3%29%282y%2B3%29%7D%3D0)
![\frac{5y-6-(-6y^{2}+(6y+9y)-9)-6y-9}{(2y-3)(2y+3)}=0 \frac{5y-6-(-6y^{2}+(6y+9y)-9)-6y-9}{(2y-3)(2y+3)}=0](https://tex.z-dn.net/?f=%5Cfrac%7B5y-6-%28-6y%5E%7B2%7D%2B%286y%2B9y%29-9%29-6y-9%7D%7B%282y-3%29%282y%2B3%29%7D%3D0+)
![\frac{5y-6-(-6y^{2}+15y-9)-6y-9}{(2y-3)(2y+3)}=0 \frac{5y-6-(-6y^{2}+15y-9)-6y-9}{(2y-3)(2y+3)}=0](https://tex.z-dn.net/?f=%5Cfrac%7B5y-6-%28-6y%5E%7B2%7D%2B15y-9%29-6y-9%7D%7B%282y-3%29%282y%2B3%29%7D%3D0)
![\frac{5y-6+6y^{2}-15y+9-6y-9}{(2y-3)(2y+3)}=0 \frac{5y-6+6y^{2}-15y+9-6y-9}{(2y-3)(2y+3)}=0](https://tex.z-dn.net/?f=%5Cfrac%7B5y-6%2B6y%5E%7B2%7D-15y%2B9-6y-9%7D%7B%282y-3%29%282y%2B3%29%7D%3D0)
группируем
![\frac{6y^{2}+(5y-15y-6y)+(-6+9-9)}{(2y-3)(2y+3)}=0 \frac{6y^{2}+(5y-15y-6y)+(-6+9-9)}{(2y-3)(2y+3)}=0](https://tex.z-dn.net/?f=%5Cfrac%7B6y%5E%7B2%7D%2B%285y-15y-6y%29%2B%28-6%2B9-9%29%7D%7B%282y-3%29%282y%2B3%29%7D%3D0+)
![\frac{6y^{2}-16y-6}{(2y-3)(2y+3)}=0 \frac{6y^{2}-16y-6}{(2y-3)(2y+3)}=0](https://tex.z-dn.net/?f=%5Cfrac%7B6y%5E%7B2%7D-16y-6%7D%7B%282y-3%29%282y%2B3%29%7D%3D0)
![\frac{2(3y^{2}-8y-3)}{(2y-3)(2y+3)}=0 \frac{2(3y^{2}-8y-3)}{(2y-3)(2y+3)}=0](https://tex.z-dn.net/?f=%5Cfrac%7B2%283y%5E%7B2%7D-8y-3%29%7D%7B%282y-3%29%282y%2B3%29%7D%3D0)
дробь обращается в нуль тогда, когда числитель равен нулю
3y²-8y-3=0
Cчитаем дискриминант:
![D=(-8)^{2}-4\cdot3\cdot(-3)=64+36=100 D=(-8)^{2}-4\cdot3\cdot(-3)=64+36=100](https://tex.z-dn.net/?f=D%3D%28-8%29%5E%7B2%7D-4%5Ccdot3%5Ccdot%28-3%29%3D64%2B36%3D100)
Дискриминант положительный
![\sqrt{D}=10 \sqrt{D}=10](https://tex.z-dn.net/?f=%5Csqrt%7BD%7D%3D10)
Уравнение имеет два различных корня:
![y_{1}=\frac{8+10}{2\cdot3}=\frac{18}{6}=3 y_{1}=\frac{8+10}{2\cdot3}=\frac{18}{6}=3](https://tex.z-dn.net/?f=y_%7B1%7D%3D%5Cfrac%7B8%2B10%7D%7B2%5Ccdot3%7D%3D%5Cfrac%7B18%7D%7B6%7D%3D3)
![y_{2}=\frac{8-10}{2\cdot3}=\frac{-2}{6}=-\frac{1}{3} y_{2}=\frac{8-10}{2\cdot3}=\frac{-2}{6}=-\frac{1}{3}](https://tex.z-dn.net/?f=y_%7B2%7D%3D%5Cfrac%7B8-10%7D%7B2%5Ccdot3%7D%3D%5Cfrac%7B-2%7D%7B6%7D%3D-%5Cfrac%7B1%7D%7B3%7D)
Ответ: ![y_{1}=3; y_{2}=-\frac{1}{3} y_{1}=3; y_{2}=-\frac{1}{3}](https://tex.z-dn.net/?f=y_%7B1%7D%3D3%3B+y_%7B2%7D%3D-%5Cfrac%7B1%7D%7B3%7D)
2) ![\frac{1}{x^{2}-6x+8}-\frac{1}{x-2}+\frac{10}{x^{2}-4}=0 \frac{1}{x^{2}-6x+8}-\frac{1}{x-2}+\frac{10}{x^{2}-4}=0](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bx%5E%7B2%7D-6x%2B8%7D-%5Cfrac%7B1%7D%7Bx-2%7D%2B%5Cfrac%7B10%7D%7Bx%5E%7B2%7D-4%7D%3D0)
отметим область допустимых значений
![\begin{cases}x^{2}-6x+8\neq0\\x-2\neq0\\x^{2}-4\neq0 \end{cases} \begin{cases}x^{2}-6x+8\neq0\\x-2\neq0\\x^{2}-4\neq0 \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Dx%5E%7B2%7D-6x%2B8%5Cneq0%5C%5Cx-2%5Cneq0%5C%5Cx%5E%7B2%7D-4%5Cneq0+%5Cend%7Bcases%7D)
воспользуемся формулой разности квадратов
![\frac{1}{(x-4)(x-2)}-\frac{1}{x-2}+\frac{10}{(x-2)(x+2)}=0 \frac{1}{(x-4)(x-2)}-\frac{1}{x-2}+\frac{10}{(x-2)(x+2)}=0](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%28x-4%29%28x-2%29%7D-%5Cfrac%7B1%7D%7Bx-2%7D%2B%5Cfrac%7B10%7D%7B%28x-2%29%28x%2B2%29%7D%3D0)
приравниваем дроби к общему знаменателю
![\frac{x+2-(x-4)(x+2)+10(x-4)}{(x-4)(x-2)(x+2)}=0 \frac{x+2-(x-4)(x+2)+10(x-4)}{(x-4)(x-2)(x+2)}=0](https://tex.z-dn.net/?f=%5Cfrac%7Bx%2B2-%28x-4%29%28x%2B2%29%2B10%28x-4%29%7D%7B%28x-4%29%28x-2%29%28x%2B2%29%7D%3D0)
поочерёдно раскрываем скобки
![\frac{x+2-(x^{2}+2x-4x-8)+10x-40}{(x-4)(x-2)(x+2)}=0 \frac{x+2-(x^{2}+2x-4x-8)+10x-40}{(x-4)(x-2)(x+2)}=0](https://tex.z-dn.net/?f=%5Cfrac%7Bx%2B2-%28x%5E%7B2%7D%2B2x-4x-8%29%2B10x-40%7D%7B%28x-4%29%28x-2%29%28x%2B2%29%7D%3D0)
![\frac{x+2-(x^{2}+(2x-4x)-8)+10x-40}{(x-4)(x-2)(x+2)}=0 \frac{x+2-(x^{2}+(2x-4x)-8)+10x-40}{(x-4)(x-2)(x+2)}=0](https://tex.z-dn.net/?f=%5Cfrac%7Bx%2B2-%28x%5E%7B2%7D%2B%282x-4x%29-8%29%2B10x-40%7D%7B%28x-4%29%28x-2%29%28x%2B2%29%7D%3D0)
![\frac{x+2-(x^{2}-2x-8)+10x-40}{(x-4)(x-2)(x+2)}=0 \frac{x+2-(x^{2}-2x-8)+10x-40}{(x-4)(x-2)(x+2)}=0](https://tex.z-dn.net/?f=%5Cfrac%7Bx%2B2-%28x%5E%7B2%7D-2x-8%29%2B10x-40%7D%7B%28x-4%29%28x-2%29%28x%2B2%29%7D%3D0)
![\frac{x+2-x^{2}+2x+8+10x-40}{(x-4)(x-2)(x+2)}=0 \frac{x+2-x^{2}+2x+8+10x-40}{(x-4)(x-2)(x+2)}=0](https://tex.z-dn.net/?f=%5Cfrac%7Bx%2B2-x%5E%7B2%7D%2B2x%2B8%2B10x-40%7D%7B%28x-4%29%28x-2%29%28x%2B2%29%7D%3D0)
группируем
![\frac{-x^{2}+(x+2x+10x)+(2+8-40)}{(x-4)(x-2)(x+2)}=0 \frac{-x^{2}+(x+2x+10x)+(2+8-40)}{(x-4)(x-2)(x+2)}=0](https://tex.z-dn.net/?f=%5Cfrac%7B-x%5E%7B2%7D%2B%28x%2B2x%2B10x%29%2B%282%2B8-40%29%7D%7B%28x-4%29%28x-2%29%28x%2B2%29%7D%3D0+)
![\frac{-x^{2}+13x-30}{(x-4)(x-2)(x+2)}=0 \frac{-x^{2}+13x-30}{(x-4)(x-2)(x+2)}=0](https://tex.z-dn.net/?f=%5Cfrac%7B-x%5E%7B2%7D%2B13x-30%7D%7B%28x-4%29%28x-2%29%28x%2B2%29%7D%3D0)
дробь обращается в нуль тогда, когда числитель равен нулю
-x²+13x-30=0
Cчитаем дискриминант:
![D=13^{2}-4\cdot(-1)\cdot(-30)=169-120=49 D=13^{2}-4\cdot(-1)\cdot(-30)=169-120=49](https://tex.z-dn.net/?f=D%3D13%5E%7B2%7D-4%5Ccdot%28-1%29%5Ccdot%28-30%29%3D169-120%3D49)
Дискриминант положительный
![\sqrt{D}=7 \sqrt{D}=7](https://tex.z-dn.net/?f=%5Csqrt%7BD%7D%3D7)
Уравнение имеет два различных корня:
![x_{1}=\frac{-13+7}{2\cdot(-1)}=\frac{-6}{-2}=3 x_{1}=\frac{-13+7}{2\cdot(-1)}=\frac{-6}{-2}=3](https://tex.z-dn.net/?f=x_%7B1%7D%3D%5Cfrac%7B-13%2B7%7D%7B2%5Ccdot%28-1%29%7D%3D%5Cfrac%7B-6%7D%7B-2%7D%3D3)
![x_{2}=\frac{-13-7}{2\cdot(-1)}=\frac{-20}{-2}=10 x_{2}=\frac{-13-7}{2\cdot(-1)}=\frac{-20}{-2}=10](https://tex.z-dn.net/?f=x_%7B2%7D%3D%5Cfrac%7B-13-7%7D%7B2%5Ccdot%28-1%29%7D%3D%5Cfrac%7B-20%7D%7B-2%7D%3D10)
Ответ: ![x_{1}=3; x_{2}=10 x_{1}=3; x_{2}=10](https://tex.z-dn.net/?f=x_%7B1%7D%3D3%3B+x_%7B2%7D%3D10)
3) ![\frac{x^{2}+1}{x}+\frac{x}{x^{2}+1}=2,5 \frac{x^{2}+1}{x}+\frac{x}{x^{2}+1}=2,5](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%2B1%7D%7Bx%7D%2B%5Cfrac%7Bx%7D%7Bx%5E%7B2%7D%2B1%7D%3D2%2C5)
отметим область допустимых значений
![\begin{cases} x\neq0\\x^{2}+1\neq0 \end{cases} \begin{cases} x\neq0\\x^{2}+1\neq0 \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D+x%5Cneq0%5C%5Cx%5E%7B2%7D%2B1%5Cneq0+%5Cend%7Bcases%7D)
перенесём всё в левую часть, при этом не забываем сменить знак на противоположный
![\frac{x^{2}+1}{x}+\frac{x}{x^{2}+1}-2,5=0 \frac{x^{2}+1}{x}+\frac{x}{x^{2}+1}-2,5=0](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%2B1%7D%7Bx%7D%2B%5Cfrac%7Bx%7D%7Bx%5E%7B2%7D%2B1%7D-2%2C5%3D0)
приравниваем дроби к общему знаменателю
![\frac{(x^{2}+1)(x^{2}+1)+x\cdot x-2,5x(x^{2}+1)}{x(x^{2}+1)}=0 \frac{(x^{2}+1)(x^{2}+1)+x\cdot x-2,5x(x^{2}+1)}{x(x^{2}+1)}=0](https://tex.z-dn.net/?f=%5Cfrac%7B%28x%5E%7B2%7D%2B1%29%28x%5E%7B2%7D%2B1%29%2Bx%5Ccdot+x-2%2C5x%28x%5E%7B2%7D%2B1%29%7D%7Bx%28x%5E%7B2%7D%2B1%29%7D%3D0)
<img src="https://tex.z-dn