Помогите с решением,пожалуйста

0 голосов
40 просмотров

Помогите с решением,пожалуйста


image

Математика (15 баллов) | 40 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Интеграл(x* e^6xdx) = (1/6)*Интеграл(xd(e^6x) =(1/6)(x*e^6x -Интеграл(e^6xdx) =
(x*e^6x)/6  - e^6x/36 = (e^6x/36)*(6x -1) | a=0 ;b=1 = (5*e^6)/36 +1/36 =(5*e^6 +1)/36,
---------------------------------------
y '' +4y' +4 = 0;
k² +4k+4 =0 ;
(k+2)² =0 ;
k = - 2 .
y =C₁e ^(-2x) +C₂xe^(-2x) .
---------------------------------------
Z =(Ln y²/x) ^ 6 ;
частное производное по x ( у считаем постоянной):
Z' x = 6*(Ln y²/x) ^ 5 * x/y² *(y²/x) ' = 6*(Ln y²/x) ^ 5 * x/y² *(-y²/x²) = -(6/x)*(Ln y²/x) ^ 5 .
частное производное по y ( x считаем постоянной):
Z' y =  6*(Ln y²/x) ^ 5 * x/y² *(y²/x) ' =6*(Ln y²/x) ^ 5 * x/y² *2y/x = (6/y)*Ln y²/x) ^ 5 .
**********************
(Ln u) ' =(1/u) *u'
**********************

(181k баллов)
0

спасибо!)

0

стоит проверить