Решите уравнение cos^4 (2x) - cos^2 (4x) = 0
(1+cos4x)²/4-cos²4x=0 1+2cos4x+cos²4x-4cos²4x=0 3cos²4x-2cos4x-1=0 cos4x=a 3a²-2a-1=0 D=4+12=16 a1=(2-4)/6=-1/3⇒cos4x=-1/3⇒4x=+-(π-arccos1/3)+2πn⇒ x=+-1/4(π-arccos1/3)+πn/2 a2=(2+4)/6=1⇒cos4x=1⇒4x=2πn⇒x=πn/2