Помогите решить часть1 и часть 2.Пожалуйсто.
Помогите решить часть1 и часть 2. Часть II. 5. Известно,что cos(a)=-4/5, пиРешение: Воспользуемся формулой sin(2a) =2sin(a)cos(a) При условии что пи|sin(a)| = √(1-cos²(a)) = √(1-(4/5)²) =√(1-16/25) =√(9/25)=3/5 sin(a) = -3/5 sin(2a) =2(-3/5)(-4/5) =24/25=0,96 Ответ:0,96 6. Найдите f'(2пи/3) если f(x)=4sin(x/2) Решение: Найдем производную функции f(x) = (4sin(x/2))' = 4(sin(x/2))' =4cos(x/2)*(x/2)' =4*(1/2)*cos(x/2) =2cos(x/2) f'(2пи/3) = 2cos((2пи/3)*(1/2)) =2cos(пи/3) =2*(1/2) =1 Ответ: 1. 7 Решите неравенство Решение: Применяем метод интервалов. Найдем значение переменной в которой множители меняют свой знак решив уравнения х-2=0 х+3 = 0 x-1 =0 x=2 x=-3 x=1 На числовой прямой отметим эти точки. По методу подстановки найдем знаки левой части неравенства на интервалах. Например при х=0 x-2<0 x+3>0 x-1<0 следовательно вся <br>дробь(х-2)(х+3)/(х-1)>0 . .........................0...............+ ........ ............._...........0.....+........... --------------------!---------------------!---------------------!---------------->x ........................-3.........................1.........................2 Следовательно неравенство истинно для всех значений х ∈[-3;1)U[2;+∞) Ответ: [-3;1)U[2;+∞) 8. Найдите точку минимума функции y =x³+x²-5x+1 Решение: Найдем производную функции y' = (x³+x²-5x+1)' =3x² + 2x -5 Найдем критические точки решив уравнение y' = 0 3x² + 2x -5 = 0 D = 2² -4*(-5)*3 = 4+60 = 64 На числовой прямой отобразим эти точки. Найдем по методу подстановки знаки производной. Например при х=0 3x² + 2x -5 =-5 <0<br> ..........+.......0........-...........0......+....... ----------------!-----------------!--------------->x ..................-5/3..................1............ По знаку производной на интервалах видно, что функция возрастает при x∈(-∞;-5/3)U(1;+∞) убывает при х∈(-5/3;1) Следовательно в точке х=1 функция имеет точку локального минимума у(1) = 1+1-5+1 =-2 Ответ: х=1, у=-2
А третью часть не могли бы помочь)
Часть III Задача 10. Уровень воды изменяется по закону Н(t)=7,2-1,92t+0,128t^2. Преобразуем правую часть 7,2-1,92t+0,128t^2= (1/125)*125(7,2-1,92t+0,128t^2) =(1/125)(900-240t+16t^2) =(1/125)(4t-30)^2 =(4/125)(t
=(1/125)(4t-30)^2=(16/125)(t-7,5)^2. Из данного уравнения видно что минимальный уровень вода достигнет через 7,5 мин. Н(7,5)=0
Задача 9. Пусть первое число равно х , в второе у. Тогда х+у=8. Необходимо найти максимум функции z = х^3*y. Заменим в уравнении у, как у=8-х. Тогда z=x^3(8-x) =8x^3 -x^4. Найдем производную данной функции z' =24x^2-4x^3 =4x^2(6-x). Критические точки х=0 и х=6. Локальный максимум функция z имеет в точке x=6 так как от -оо до 6 функция возрастает, а то 6 до +оо убывает. Следовательно эти числа х=6 y= 8 - 6 = 2. Ответ 2,6
!!!! Не записал удвоенное второе слагаемое. (хотя результат не поменяется) Пусть первое число равно х , в второе у. Тогда х+у=8. Необходимо найти максимум функции z = х^3*2y. Заменим в уравнении у, как у=8-х. Тогда z=2x^3(8-x) =16x^3 -2x^4. Найдем производную данной функции z' =48x^2-8x^3 =8x^2(6-x). Критические точки х=0 и х=6. Локальный максимум функция z имеет в точке x=6 так как от -оо до 6 функция возрастает, а то 6 до +оо убывает. Следовательно эти числа х=6 y= 8 - 6 = 2