Докажите ,что при любом натуральном n значение выражения n(n+1)(n+2)(n+3)+1 является...

0 голосов
23 просмотров

Докажите ,что при любом натуральном n значение выражения n(n+1)(n+2)(n+3)+1 является квадратом натурального числа


Математика (99 баллов) | 23 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Переставим множители так:
n(n+3)*(n+1)(n+2) + 1 = (n^2 + 3n)(n^2 + 3n + 2) + 1
Сделаем замену n^2 + 3n = m
m(m + 2) + 1 = m^2 + 2m + 1 = (m + 1)^2 = (n^2 + 3n + 1)^2
При любом n E N это число является квадратом натурального числа.

(320k баллов)
0

спасибо!

0

пожалуйста!