№1 В прямоугольной трапеции боковые стороны равны 12 см и 15 см. ** сколько сантиметров...

0 голосов
45 просмотров

№1 В прямоугольной трапеции боковые стороны равны 12 см и 15 см. На сколько сантиметров различаются основания этой трапеции?
№2 Теплоход проходит по течению реки до пункта назначения 140 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 5 км\ч , стоянка длится 11 ч , а в пункт отправления теплоход возвращается через 32 ч после отплытия из него.


Алгебра (132 баллов) | 45 просмотров
0

ну она же мне помогла не ссортесь

0

Да ну?

0

юррэм султан, мы не соримся))

0

я ответы не находила

0

ишется одна "с"

0

спасибо за исправление

0

это номер моего врага поэтому всё нормально я на сайтах знакомств его выставила

0

Ой, да ну вас.

0

это типа месть

0

Ок.

Дано ответов: 2
0 голосов
Правильный ответ

1) Короткая сторона (которая одновременно является высотой трапеции) равна 12 см, длинная сторона равна 15 см. По теореме Пифагора получаем разницу оснований:
\sqrt{15^2-12^2}=9
Ответ: 9 см.

2) Пусть собственная скорость теплохода равна х. Составляем и решаем уравнение:
\frac{140}{x+5}+11+\frac{140}{x-5}=32\\\frac{140}{x+5}+\frac{140}{x-5}=21\\\frac{140(x-5)+140(x+5)}{(x-5)(x+5)}=21\\140x-700+140x+700=21(x^2-25)\\280x=21x^2-525\\21x^2-280x-525=0\\x=15
Ответ: 15 км/ч.

(7.7k баллов)
0 голосов

Задача 1
Рисуем трапецию, (ABCD) 
АВ = 15 см, CD = 12 см, следовательно, АД - основание (нижнее)
CD = BH = 12 см, ВС = HD
Далее по теореме Пифагора, √15² - 12² = √81 = 9 см

Задача 2
Пусть х - скорость в неподвижной воде
Составим уравнение:
140 : (х + 5) + 140 : (х - 5) = 32 - 11
280х = 21х² - 525
3х² - 40х - 75 = 0
х = 15,     = -5/3

(13.3k баллов)