0\; ," alt=" \left \{ {{log_3x+log_3y=1-log_32} \atop {log_3(x+y)=2}} \right. \; ,\; \left \{ {{log_3(xy)=log_33-log_32} \atop {x+y=3^2}} \right. \; ,\; \left \{ {{log_3(xy)=log_3\frac{3}{2}} \atop {x+y=9}} \right. \\\\ \left \{ {{xy=\frac{3}{2}} \atop {y=9-x}} \right. \; ,\; \left \{ {{x(9-x)=\frac{3}{2}} \atop {y=9-x}} \right. \; ,\; \left \{ {{x^2-9x+\frac{3}{2}=0} \atop {y=9-x}} \right. \; ,\; \left \{ {{2x^2-18x+3=0} \atop {y=9-x}} \right. \\\\2x^2-18x+3=0\\\\D/4=81-6=75,\\\\x_1=\frac{9-5\sqrt3}{2}>0\; ," align="absmiddle" class="latex-formula">
0\\\\Otvet:\; \; (\frac{9-5\sqrt3}{2};\frac{9+5\sqrt3}{2})\; \; ;\; (\frac{9+5\sqrt3}{2};\frac{9-5\sqrt3}{2})." alt="x_2=\frac{9+5\sqrt3}{2}\ \textgreater \ 0\\\\y_1=9-x_1=9-\frac{9-5\sqrt3}{2}=\frac{9+5\sqrt3}{2}\ \textgreater \ 0\\\\y_2=9-x_2=9-\frac{9+5\sqrt3}{2}=\frac{9-5\sqrt3}{2}>0\\\\Otvet:\; \; (\frac{9-5\sqrt3}{2};\frac{9+5\sqrt3}{2})\; \; ;\; (\frac{9+5\sqrt3}{2};\frac{9-5\sqrt3}{2})." align="absmiddle" class="latex-formula">