1) [33*(4¹/⁴)⁻¹² + (2⁻⁵/(-2)]⁻¹
=[33 *4⁻³ - (1/(2*2⁵) ]⁻¹=
=.[33/4³ - 1/2⁶]⁻¹=
=[33/64 - 1/64]⁻¹=
=[32/64]⁻¹=64/32=2
Ответ: 2.
2) √(3x²+1) > 2√x
{3x²+1≥0
{x≥0
{3x²+1>4x
3x²+1≥0
Верно при любом значении х.
3x²+1>4x
3x²-4x+1>0
3x²-4x+1=0
D=(-4)² -4*3=16-12=4
x₁=4-2=2/6 =1/3
6
x₂=4+2=1
6
+ - +
------- 1/3 ----------- 1 ----------
\\\\\\\\\\ \\\\\\\\\\\\\\
x∈(-∞; 1/3)U(1; +∞)
{x≥0
{x∈(-∞; 1/3)U(1; +∞)
x∈[0; 1/3)U(1; +∞)
3) 2*5^(√x) +25*5^(√x) =135
5^(√x) (2+25) =135
5^(√x)=135 : 27
5^(√x)=5
√x=1
x=1
Ответ: 1.
4) tg(33x+27°)=√3
33x+27°=60° + 180°n, n∈Z
33x=60° - 27° +180°n, n∈Z
33x=33° + 180°n, n∈Z
x=33° + 180° n , n∈Z
33 33
x=1° + 60°n, n∈Z
11