Пирамида называется вписанной в конус, если ее ребра совпадают с образующими конуса, а основание вписано в основание конуса.
- объем пирамиды
sin a = h ( высота пирамиды)/b (ребро пирамиды)
h=sina * b
h=sin60*10=0.866*10=8,66 - высота пирамиды
ОС^2=СS^2-SO^2
OC^2=10^2-8.66^2=100-75=25
OC=5
CC1=
BC=\frac{2*CC1}{\sqrt{3}}" alt="\frac{\sqrt{3}*BC}{2}\\
BC=\frac{2*CC1}{\sqrt{3}}" align="absmiddle" class="latex-formula">
CC1=2OC=10
BC=2*10/1.73=11.5
площадь основания пирамиды.где а - сторона основания - ВС
S=230/4=57.5
V=57.5*8.66=498
Смотри вложение