Найдите наименьшее значение ф-й y=(x-3)^2(x+1)+2 ** отрезке -1:5.Срочно помогите...

0 голосов
42 просмотров

Найдите наименьшее значение ф-й y=(x-3)^2(x+1)+2 на отрезке -1:5.Срочно помогите пожалуйста!


Алгебра (17 баллов) | 42 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Находим производную
у`=2(x-3)(x+1)+(x-3)²
y`=(x-3)(2x+2+x-3)
y`=(x-3)(3x-1)
Приравниваем к нулю
х=3  или х=1/3 -точки возможного экстремума
Обе точки входят в отрезок [-1;5]
При переходе через точку х=1/3 производная меняет знак с - на +
Значит. это точка минимума.
Находим значения функции в этой точке и на концах отрезка и выбираем наименьшее
y(-1)=(-1-3)²(-1+1)+2=2
y(1/3)=(1\3-3)²(1/3+1)+2>2
y(5)=(5-3)²(5+1)+2>2
Ответ. Наименьшее значение y(-1)=2









(414k баллов)