1) В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ABC УГОЛ А РАВЕН 90 ГРАДУСОВ,AB РАВНО 20 СМ,ВЫСОТА AD...

0 голосов
29 просмотров

1) В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ABC УГОЛ А РАВЕН 90 ГРАДУСОВ,AB РАВНО 20 СМ,ВЫСОТА AD РАВНА 12 СМ. НАЙДИТЕ АС И COS УГЛА С.

2) диагональ BD


параллелограмма ABCD перпендикулярна к стороне AD. Найдите площадь параллелограмма ABCD,если AB=12 см, угол А=41 градусу.


Геометрия (36 баллов) | 29 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) AD - высота, опущенная из высоты.
BD=\sqrt{400-144} = \sqrt{256}=16 см.
В прямоугольном треугольнике высота, опущенная из вершины прямого угла равна корню квадратному из произведения отрезков, на которые высота делит гипотенузу. Пусть x - второй отрезок гипотенузы.
12= \sqrt{16*x}
x=9
Значит гипотенуза равна 16+9=25 см
Из треугольника ABC AC=\sqrt{625-400}= \sqrt{225}=15см
cos(угла C)=\frac{AC}{BC}= \frac{15}{25}=0,6
Ответ: 15 см, 0,6
2) cos( угла A)≈0,75
AD=cos( угла A)*AB
AD=0,75*12=9 см
S=AB*AD*cos( угла A)=12*9*0,75=81 см
Ответ: 81 см

(5.8k баллов)