В правильной четырехугольной пирамиде боковые грани образуют с плоскостью основания углы...

0 голосов
83 просмотров

В правильной четырехугольной пирамиде боковые грани образуют с плоскостью основания углы 30 градусов. Найдите площадь боковой поверхности пирамиды, если ее апофема равна 4√3 см.


Математика (27 баллов) | 83 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Если провести осевое сечение пирамиды через апофему, то получаем равнобедренный треугольник с боковыми сторонами, равными апофеме, и основанием, равным стороне квадрата в основании пирамиды.
Сторона основания равна а = 2A*cos 30 = 2*4√3*(√3/2) = 12 см.
Площадь боковой поверхности пирамиды равна S = (1/2)P*A = (1/2)*(12*4)*4√3 = 96√3 см².
здесь Р - периметр квадрата основания пирамиды.

(309k баллов)
0

а можно подробней? ну график и по порядочку, у меня контрольная работа на дому.

0

Если под графиком подразумевается рисунок пирамиды, то его легко самому изобразить. А какой ещё порядок нужен в описании - так описание делается так, как в учебниках дают.

0

а хорошо, значит это полный ответ действий?

0

Это зависит в каждом конкретном случае от требований преподавателей.

0

[JHJIJ CGFCB,J

0

хорошо спасибо