При каких значениях параметра а, система имеет одно решение

0 голосов
37 просмотров
ax+1=cos(x)+y\\ y^{2}=cos(x)^{2}\\

При каких значениях параметра а, система имеет одно решение

Алгебра (619 баллов) | 37 просмотров
0

да

Дан 1 ответ
0 голосов
Правильный ответ

У меня получилось, что ни при каком а, т.к. из первого уравнения y=ax+1-cos(x). Подставляя это во второе, получим (ax+1-2cos(x))(ax+1)=0. Если a=0, то cos(x)=1/2, что имеет бесконечное число решений. Если a≠0, то всегда есть корень x=-1/a. Кроме того, уравнение cos(x)=(ax+1)/2 тоже всегда имеет корень, т.к. любая прямая, проходящая через точку (0,1/2) всегда пересекает график cos(x). Значит, единственная возможность этой системе иметь одно решение, это когда -1/a является единственным корнем уравнения cos(x)=(ax+1)/2. Тогда cos(-1/a)=0, откуда a=2/(\pi(2k-1)), k\in\mathbb{Z}, но для них будет всегда больше одного решения, т.к. даже при самом большом значении a при k=0 и k=1 прямая (ax+1)/2 пересечет график cos(x) в трех точках. А значит, при всех остальных а угол наклона прямой будет еще меньше, и, значит, пересечений с косинусом будет еще больше.



(56.6k баллов)