Подобные неравенства решаются методом
интервалов. В этом методе мы находим все точки, в которых выражение(в данном случае и числитель и знаменатель) обращаются в 0. Потом эти точки отмечаем на прямой, и находим знаки интервалов. А от туда записываем ответ.
Итак, к делу:
Числитель:
В итоге, наше неравенство выглядит таким образом:
Теперь рисуем прямую, отмечаем точки и находим знаки промежутков. (см. рисунок)
Обратите внимание, что точка -1 "выколота", так при 1, в знаменателе получается 0, а на 0 делить нельзя.
В ответ записываем промежутки, в которых стоит знак -
Произведение наибольшего отрицательного
целого корня (-2) и наименьшего целого корня(2):
Ответ:
-4.