1) y=e^(sin2x) + 2tg(π/4)=e^(sin2x)+2*1=e^(sin2x) + 2
y' = (e^(sin2x))' + 2' = e^(sin2x) * (sin2x)' = 2cos2x * e^(sin2x)
2) y=(4/5) ln √(1+5x)
cosx
y' = 4/5 * 1 * [(√(1+5x))' cosx - (√(1+5x)) cosx' ] =
√(1+5x) cos²x
cosx
= 4 * [ 5cosx + sinx √(1+5x) ] =
5√(1+5x) [ 2√(1+5x) ]
[ cosx ]
= 4 * [ 5cosx + 2(1+5x)sinx] =
5√(1+5x) [ 2√(1+5x) cosx ]
= 2(5cosx+(2+10x)sinx) =
5(1+5x)cosx
= 0.4(5cosx +(2+10x)sinx)
(1+5x)cosx
= 2cosx + (0.8+4x)sinx
(1+5x)cosx