В треугольнике АВС стороны АВ; ВС и АС равны соответственно 4;5 и 6. ** стороне АС...

0 голосов
20 просмотров

В треугольнике АВС стороны АВ; ВС и АС равны соответственно 4;5 и 6. На стороне АС находится цент окружности, касающийся сторон АВ и ВС. Найдите
произведение длин отрезков, на которые центр окружности делит сторону АС.


Геометрия (35 баллов) | 20 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Если О - центр окружности, то BO - биссектриса (по свойству касательных, ну, или по равенству треугольников, если провести радиусы в точки касания). Значит по свойству биссектрис OA/OC=AB/BC=4/5. С другой стороны ОА+ОС=6. Решаем эту систему, получаем ОА=8/3, ОС=10/3. Значит ОА*ОС=80/9.

(56.6k баллов)