Помогите решить дифференциальное уравнение, очень надо! xdy-ydx=(x^2+y^2)^1/2dx

0 голосов
46 просмотров

Помогите решить дифференциальное уравнение, очень надо!
xdy-ydx=(x^2+y^2)^1/2dx


Математика (12 баллов) | 46 просмотров
0

ошибки нет в записи? разность двух малых величин равна "не малой" величине

0

@Dedekind dx в конце еще дописала

Дан 1 ответ
0 голосов

Xdy-ydx=(x^2+y^2)^1/2 dx
(xdy-ydx)/x^2=(1+(y/x)^2)dx
d(y/x)/(1+(y/x)^2)^1/2=dx
int(d(y/x)/(1+(y/x)^2)^1/2)=int(dx)
ln|y/x+((y/x)^2+1)^1/2|=x+C
|y/x+((y/x)^2+1)^1/2|=e^(x+C), так как y/x+((y/x)^2+1)^1/2>0
y/x+((y/x)^2+1)^1/2=e^(x+C)
t=y/x
t+(t^2+1)^1/2=e^(x+C)
(t^2+1)^1/2=e^(x+C)-t
t^2+1=e^(2x+2C)+t^2-2te^(x+C)
2te^(x+C)=e^(2x+2C)-1
t=(e^(2x+2C)-1)/(2e^(x+C))
y=x (e^(2x+2C)-1)/(2e^(x+C))=1/2 *x*(e^(x+C)-e^(-(x+C))=x*sh(x+C)














(1.6k баллов)