Xdy-ydx=(x^2+y^2)^1/2 dx
(xdy-ydx)/x^2=(1+(y/x)^2)dx
d(y/x)/(1+(y/x)^2)^1/2=dx
int(d(y/x)/(1+(y/x)^2)^1/2)=int(dx)
ln|y/x+((y/x)^2+1)^1/2|=x+C
|y/x+((y/x)^2+1)^1/2|=e^(x+C), так как y/x+((y/x)^2+1)^1/2>0
y/x+((y/x)^2+1)^1/2=e^(x+C)
t=y/x
t+(t^2+1)^1/2=e^(x+C)
(t^2+1)^1/2=e^(x+C)-t
t^2+1=e^(2x+2C)+t^2-2te^(x+C)
2te^(x+C)=e^(2x+2C)-1
t=(e^(2x+2C)-1)/(2e^(x+C))
y=x (e^(2x+2C)-1)/(2e^(x+C))=1/2 *x*(e^(x+C)-e^(-(x+C))=x*sh(x+C)