Решите пожалуйста, что сможете*

0 голосов
23 просмотров

Решите пожалуйста, что сможете*


image

Алгебра (121 баллов) | 23 просмотров
Дано ответов: 2
0 голосов
Правильный ответ
1) = \frac{log_{3} (25*6)^{ \frac{1}{2} } }{ log_{3} 150^{ \frac{1}{4} } } = \frac{1}{2}: \frac{1}{4} =2
2) =log_{81} log_{9} 9^{3}=log_{81} 3= log_{ 3^{4} } 3= \frac{1}{4}
3) = log_{243} log_{24} 24^{ \frac{1}{3}} = log_{243} \frac{1}{3} = log_{ 3^{5} } 3^{-1} =- \frac{1}{5}
(450 баллов)
0

спасибо большое

0 голосов

В первом воспользуемся переходом к новому основанию:
\frac{log _{3}5 \sqrt{6} }{log _{3} \sqrt[4]{150} } =\frac{log _{3} \sqrt{150} }{log _{3} \sqrt[4]{150} } =log _{\sqrt[4]{150}} \sqrt{150}= 2
log _{81} (log _{9} 729)=log _{81} 3= \frac{1}{4} \\ 
log _{243} (log _{24} 2 \sqrt[3]{3} )=log _{243} (log _{24} \sqrt[3]{24} ) =log _{243} \frac{1}{3} =- \frac{1}{5}

(25.8k баллов)
0

извините, я второй не поняла

0

а что не понятно? log9(729)=3,

0

значит log81(log9(729))=log81(3)=1/4

0

хорошо спасибо*