Найти наибольшее и наименьшее значение функции f(x) ** отрезке [a;b] f(x)=

0 голосов
29 просмотров

Найти наибольшее и наименьшее значение функции
f(x) на отрезке [a;b]
f(x)=\frac{1}{2} x^{2} - \frac{1}{3} x^{3}, [1;3]


Математика | 29 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

 D(y)=(-∞;∞)
1. f'(x)=(1/2 x²-1/3 x³)'=(1/2)*2x-(1/3)*3x²=x-x²
2. f'(x)=0, x-x²=0, x(1-x)=0
x=0 или 1-x=0
x₁=0 x₂=1
x=0∉[1;3]
3.  f(1)=(1/2)*1²-(1/3)*1³=1/6
f(3)=(1/2)*3²-(1/3)*3³=9/2-9=-4,5
ответ:fнаим=f(3)=-4,5,  fнаиб=f(1)=1/6

(275k баллов)