Круг с центром О
Хорда АВ=64, хорда СД=48, АВ||CД
Опустим из О перпендикуляр ОН на СД, он же перпендикулярен АВ и пересекает АВ в точке Е. ЕН=8 - расстояние между хордами:
ОН=ОЕ+ЕН=ОЕ+8
ΔОАВ - равнобедренный (ОА=ОВ - радиусы), тогда ОЕ - высота, медиана (АЕ=ЕВ=32) и биссектриса:
ОА²=АЕ²+ОЕ²=1024+ОЕ²
аналогично ΔОСД - равнобедренный (ОС=ОД - радиусы), тогда ОН - высота, медиана (СН=НД=24) и биссектриса:
ОС²=СН²+ОН²=576+(ОЕ+8)²=576+ОЕ²+16ОЕ+64=ОЕ²+16ОЕ+640
Т.к. ОА=ОС, то 1024+ОЕ²=ОЕ²+16ОЕ+640
16ОЕ=384
ОЕ=24
Значит радиус ОА=√1024+576=1600=40
Диаметр круга равен 2ОА=2*40=80