17.Тело массой m =10 кг тянут по горизонтальной поверхности с силой F = 39,2 Н. Если эта...

0 голосов
39 просмотров

17.Тело массой m =10 кг тянут по горизонтальной поверхности с силой F = 39,2 Н. Если эта сила приложена к телу под углом 60° к горизонту, оно движется равномерно. а) С каким ускорением будет двигаться, тело, если силу приложить под углом а = 30°? б) Под каким углом нужно приложить силу, чтобы тело двигалось с максимальным ускорением? Чему равно это ускорение?


Физика (52 баллов) | 39 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
Хорошая задача.
Вертикальная составляющая силы F F1=F*sin(u), гда u - угол наклона силы тяги к горизонту. Горизонтальная F2=F*cos(u).
Ускорение тела  a=(F2-T)/m, где T - сила трения тела о поверхность, T=(m*g-F1)*k, k - коэффициент трения.
Говорят, что тело движется равномерно при u=60°, это значит, что
(m*g-F*sin(60°))*k=F*cos(60°) - отсюда можно найти k=F*cos(60°)./(m*g-F*sin(60°)=39.2*cos(60°)/(10*9.81-39.2*sin(60°))=0.3055.
  Если угол к горизонту составит 30°,  ускорение a=(F*cos(30)-(m*g-F*sin(30))*k)/m=
(39.2*0.866-(10*9.81-39.2*0.5)*0.3055)/10=1м/с^2

Чтобы найти угол при котором ускорение максимально, достаточно продифференцировать по углу формулу ускорения, и получим  этот угол при равенстве нулю производной. A=(F*cos(u)-m*g*k+f*sin(u)*k)/m   Можно умножить на константу m и и разделить на F Производная  равна 0=- sin(u)+cos(u)*k, отсюда sin(u)=k*cos(u) или k=tg(u), отсюда u=arctg(k)=arctg(0.3055)=16.98°

Любопытно посмотреть на ускорение: a= a=(F*cos(16.98)-(m*g-F*sin(16.98))*k)/m=
(39.2*0.9564-(10*9.81-39.2*0.292)*0.3055)/10=1.1м/с^2
Кстати, если продолжать наклонять направление тяги, ускорение будетпадать, и при горизонтальной тяге составит всего около 0.9м/с^2.

Я бы предложил напоследок задачку в продолжение – при каком угле  наклона вниз  тело уже не удастся стронуть с места?




(1.2k баллов)