1) sinx-√2 sin3x=-sin5x
sinx+sin5x-√2 sin3x=0
2sin3xcos2x-√2sin3x=0
sin3x(2cos2x-√2)=0
sin3x=0⇒3x=πn⇒x=πn/3,n∈Z
cos2x=√2/2⇒2x=+-π/4+2πn⇒x=+-π/8+πn,n∈Z
2)cos(70º+x)cos(x-20º)=1/2
1/2(cos90+cos(2x+50))=1/2
cos(2x+50)=1⇒2x+50=360n⇒2x=-50+360n⇒x=-25+180n,n∈Z
3)sin3x-√3 cos2x=sinx
sin3x-sinx-√3 cos2x=0
2sinxcos2x-√3cosx=0
cos2x(2sinx-√3)=0
cos2x=0⇒2x=π/2+πn⇒x=π/4+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πn,n∈Z
4)4cos^2x+sinxcosx+3sin^2x-3=0
4cos^2x+sinxcosx+3sin^2x-3sin²x-3cos²x=0
cos²x+sinxcosx=0/cos²x≠0
tgx+1=0
tgx=-1⇒x=-π/4+πn,n∈Z
5)cos^2x-3sinxcosx=-1
cos^2x-3sinxcosx+sin²x+cos²x=0/cos²x≠0
tg²x-3tgx+2=0
tgx=a
a²-3a+2=0
a1+a2=3 U a1*a2=2
a1=1⇒tgx=1⇒x=π/4+πn,n∈Z
a2=2⇒tgx=2⇒x=arctg2+πn,n∈Z