Периметр четырехугольника описанного около окружности, равен 48, две его стороны равны 9...

0 голосов
27 просмотров

Периметр четырехугольника описанного около окружности, равен 48, две его стороны равны 9 и 23. Найдите большую из оставшихся сторон.


Геометрия (12 баллов) | 27 просмотров
Дан 1 ответ
0 голосов

Если четырёхугольник описан около окружности,то суммы противоположных сторон равны,это св-во описанного выпуклого четырёхуг.
Р\2=48\2=24 - сумма противоположных сторон.
24-9=15
24-23=1
Следовательно,сторона в 15 - большая.
Ответ:15

(5.3k баллов)