а) Наудем точку пересечения кривой с осью х:
2![2x^{2}-5=0\\ x^{2}=2,5\\ x=\± \ \frac{\sqrt{10}}{2} 2x^{2}-5=0\\ x^{2}=2,5\\ x=\± \ \frac{\sqrt{10}}{2}](https://tex.z-dn.net/?f=2x%5E%7B2%7D-5%3D0%5C%5C+x%5E%7B2%7D%3D2%2C5%5C%5C+x%3D%5C%C2%B1+%5C+%5Cfrac%7B%5Csqrt%7B10%7D%7D%7B2%7D)
Площадь фигуры между линиями равна определенному интегралу в интервале значений х, а подинтегральном выражении разность функции(функция выше минус функция ниже).
Получаем сумму двух интегралов:
![\int\limits^\frac{\sqrt{10}}{2}_0 {0-(2x^{2}-5)} \, dx+ \int\limits^5_\frac{\sqrt{10}}{2}} {2x^{2}-5} \, dx \int\limits^\frac{\sqrt{10}}{2}_0 {0-(2x^{2}-5)} \, dx+ \int\limits^5_\frac{\sqrt{10}}{2}} {2x^{2}-5} \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%5Cfrac%7B%5Csqrt%7B10%7D%7D%7B2%7D_0+%7B0-%282x%5E%7B2%7D-5%29%7D+%5C%2C+dx%2B+%5Cint%5Climits%5E5_%5Cfrac%7B%5Csqrt%7B10%7D%7D%7B2%7D%7D+%7B2x%5E%7B2%7D-5%7D+%5C%2C+dx)
![\int\limits^\frac{\sqrt{10}}{2}_0 {0-(2x^{2}-5)} \, dx= \int\limits^\frac{\sqrt{10}}{2}_0 {5-2x^{2}} \, dx=5x-\frac{2x^{3}}{3}|\limits^\frac{\sqrt{10}}{2}_0=\\=\frac{5\sqrt{10}}{2}-\frac{20\sqrt{10}}{24}=\frac{40\sqrt{10}}{24}=\frac{5\sqrt{10}}{3} \int\limits^\frac{\sqrt{10}}{2}_0 {0-(2x^{2}-5)} \, dx= \int\limits^\frac{\sqrt{10}}{2}_0 {5-2x^{2}} \, dx=5x-\frac{2x^{3}}{3}|\limits^\frac{\sqrt{10}}{2}_0=\\=\frac{5\sqrt{10}}{2}-\frac{20\sqrt{10}}{24}=\frac{40\sqrt{10}}{24}=\frac{5\sqrt{10}}{3}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%5Cfrac%7B%5Csqrt%7B10%7D%7D%7B2%7D_0+%7B0-%282x%5E%7B2%7D-5%29%7D+%5C%2C+dx%3D+%5Cint%5Climits%5E%5Cfrac%7B%5Csqrt%7B10%7D%7D%7B2%7D_0+%7B5-2x%5E%7B2%7D%7D+%5C%2C+dx%3D5x-%5Cfrac%7B2x%5E%7B3%7D%7D%7B3%7D%7C%5Climits%5E%5Cfrac%7B%5Csqrt%7B10%7D%7D%7B2%7D_0%3D%5C%5C%3D%5Cfrac%7B5%5Csqrt%7B10%7D%7D%7B2%7D-%5Cfrac%7B20%5Csqrt%7B10%7D%7D%7B24%7D%3D%5Cfrac%7B40%5Csqrt%7B10%7D%7D%7B24%7D%3D%5Cfrac%7B5%5Csqrt%7B10%7D%7D%7B3%7D)
![\int\limits^5_\frac{\sqrt{10}}{2}} {2x^{2}-5} \, dx = (\frac{2x^{3}}{3}-5x)|\limits^5_\frac{\sqrt{10}}{2}}=\frac{250}{3}-25-\frac{20\sqrt{10}}{3}+\frac{5\sqrt{10}}{2} =\\=\frac{5\sqrt{10}}{3} +\frac{175}{3} \int\limits^5_\frac{\sqrt{10}}{2}} {2x^{2}-5} \, dx = (\frac{2x^{3}}{3}-5x)|\limits^5_\frac{\sqrt{10}}{2}}=\frac{250}{3}-25-\frac{20\sqrt{10}}{3}+\frac{5\sqrt{10}}{2} =\\=\frac{5\sqrt{10}}{3} +\frac{175}{3}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E5_%5Cfrac%7B%5Csqrt%7B10%7D%7D%7B2%7D%7D+%7B2x%5E%7B2%7D-5%7D+%5C%2C+dx+%3D+%28%5Cfrac%7B2x%5E%7B3%7D%7D%7B3%7D-5x%29%7C%5Climits%5E5_%5Cfrac%7B%5Csqrt%7B10%7D%7D%7B2%7D%7D%3D%5Cfrac%7B250%7D%7B3%7D-25-%5Cfrac%7B20%5Csqrt%7B10%7D%7D%7B3%7D%2B%5Cfrac%7B5%5Csqrt%7B10%7D%7D%7B2%7D+%3D%5C%5C%3D%5Cfrac%7B5%5Csqrt%7B10%7D%7D%7B3%7D+%2B%5Cfrac%7B175%7D%7B3%7D+)
Складываем:
![\frac{5\sqrt{10}}{3} +\frac{175}{3} +\frac{5\sqrt{10}}{3} = \frac{10\sqrt{10}+175}{3} \frac{5\sqrt{10}}{3} +\frac{175}{3} +\frac{5\sqrt{10}}{3} = \frac{10\sqrt{10}+175}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B5%5Csqrt%7B10%7D%7D%7B3%7D+%2B%5Cfrac%7B175%7D%7B3%7D+%2B%5Cfrac%7B5%5Csqrt%7B10%7D%7D%7B3%7D+%3D+%5Cfrac%7B10%5Csqrt%7B10%7D%2B175%7D%7B3%7D)
б) находим точки пересечения с осью y
![5x^{2}-2x=0\\ x(5x-2)=0\\ x = 0 \ \ \ \ \ 5x=2\\ / \ \ \ \ \ \ \ \ \ \ \ \ x = 0,4 5x^{2}-2x=0\\ x(5x-2)=0\\ x = 0 \ \ \ \ \ 5x=2\\ / \ \ \ \ \ \ \ \ \ \ \ \ x = 0,4](https://tex.z-dn.net/?f=5x%5E%7B2%7D-2x%3D0%5C%5C+x%285x-2%29%3D0%5C%5C+x+%3D+0+%5C+%5C+%5C+%5C+%5C+5x%3D2%5C%5C+%2F+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+x+%3D+0%2C4+)
Получаем интеграл:
![\int\limits^\frac{2}{5}_0 {0 -(5x^{2}-2x)} \, dx = (x^{2}-\frac{5x^{3}}{3})|\limits^\frac{2}{5}_0=\frac{16}{100}-\frac{32}{300}=\frac{16}{300}=\frac{4}{75} \int\limits^\frac{2}{5}_0 {0 -(5x^{2}-2x)} \, dx = (x^{2}-\frac{5x^{3}}{3})|\limits^\frac{2}{5}_0=\frac{16}{100}-\frac{32}{300}=\frac{16}{300}=\frac{4}{75}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%5Cfrac%7B2%7D%7B5%7D_0+%7B0+-%285x%5E%7B2%7D-2x%29%7D+%5C%2C+dx+%3D+%28x%5E%7B2%7D-%5Cfrac%7B5x%5E%7B3%7D%7D%7B3%7D%29%7C%5Climits%5E%5Cfrac%7B2%7D%7B5%7D_0%3D%5Cfrac%7B16%7D%7B100%7D-%5Cfrac%7B32%7D%7B300%7D%3D%5Cfrac%7B16%7D%7B300%7D%3D%5Cfrac%7B4%7D%7B75%7D)