Из формулы длины окружности P=2пR выразим радиус:
R=P/(2п)
R=√3/(2п)
Сторона шестиугольника вписанного в окружность равна радиусу
этой окружности:
a=R=√3/(2п)
Радиус вписанной в
шестиугольник окружности равен:
r=(√3*a)/2
r=(√3*(√3/(2п)))/2=3/(4п)
Длина искомой окружности равна
p=2пrp=2*п*3/(4п)=3/2=1,5