Боковая сторона равнобедренного треугольника равна 4. Угол при вершине, противолежащий...

0 голосов
507 просмотров

Боковая сторона равнобедренного треугольника равна 4. Угол при вершине, противолежащий основанию, равен 120°. Найдите диаметр окружности, опи-санной около этого треугольника


Геометрия (12 баллов) | 507 просмотров
Дан 1 ответ
0 голосов

Углы при основании равны (180-120)/2=30 градусов.
Высота, проведенная к основанию, равна половине боковой стороны, т.е. 2 (как сторона прямоугольного треугольника, лежащая напротив угла в 30 градусов)
Высота к основанию в равнобедренном треугольнике является также медианой, т.е. делит основание пополам. Следовательно, половина основания равна \sqrt{ 4^{2}-2^{2} }=\sqrt{12}, т.е. все основание равно 2 \sqrt{12} =4 \sqrt{3}
Радиус описанной окружности равен R= \frac{4^{2} }{ \sqrt{4*4^{2}-(4 \sqrt{3})^{2} } } = \frac{6}{ \sqrt{64-48} } =6/4=1.5

(659 баллов)