Решение в общем виде, где x, y и z соответственно означают три координаты для вектора, а нижний индекс a и b - вектора, которым принадлежат эти координаты:
Ответ: m = 1
А теперь попробую объяснить...
Вектор можно представить как прямую между центром координат и и точкой, соответствующей координатам вектора. Коллинеарные вектора, это как бы параллельные вектора, а это значит что при попытке нарисовать их из одной точки они наложатся друг на друга (иными словами угол с плоскостью Oxz у них будет одинаковый).
Итак, нужно найти угол между плоскостью Oxz и прямой между центром оси и точкой с координатами вектора b, после чего подобрать такую координату m, чтобы и прямая между центром оси и точкой с координатами вектора a также имела такой угол. Причем сам угол искать не надо, достаточно найти тангенс, который также будет одинаков у обоих прямых.
Тангенс это отношение противолежащего катета к прилежащему.
Для первого вектора противолежащий катет - это просто его координата по y, а вот прилежащий - проекция на плоскость Oxz. Эта проекция вычисляется по теореме пифагора, если считать саму проекцию гипотенузой, а катетами - оси x и z.
Для второго вектора ситуация отличается только тем, что вместо конкретной координаты у нас неизвестная m, которую необходимо выразить, что я и сделал.