Пусть данная призма ABCDA1B1C1D1
BD=10
AC=24
Пусть в основании лежит ромб ABCD с точкой пересечения диагоналей О.
диагонали ромба пересекаются под прямым углом
АО=АС/2=12
ОD=BD/2=5
по теореме Пифагора AD=13
BD1=26
(BD1)^2=(DD1)^2+BD^2
DD1=24
S боковой поверхности призмы = 4*DD1*AD=4*24*13=1248
S двух оснований =(2*BD*AC)/2=240
S общая= 1248+240=1488