В правильной шестиугольной призме ABCDEFABCDEF, все ребра которой равны 1, найдите угол...

0 голосов
26 просмотров

В правильной шестиугольной призме ABCDEFA_{1}B_{1}C_{1}D_{1}E_{1}F_{1}, все ребра которой равны 1, найдите угол между прямыми AB1 и BE1. Ответ напишите в градусах.


Геометрия (321 баллов) | 26 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

В этой задаче 2 способа решения:
- 1) векторный,
- 2)  геометрический.

2) Для нахождения угла между скрещивающими прямыми надо одну из них перенести параллельно в общую точку.
АВ₁ = √(1²+1²) = √2.
ВЕ₁ = √(2²+1²) = √5.
Перенесём отрезок АВ₁ в точку В - это будет отрезок ВВ₂.
Получаем треугольник ВВ₂Е₁.
Отрезок В₂Е₁ = √((1/2)²+(3*1*cos 30)) = √((1/4)+9*3/4) = √(28/4) = √7.
Отсюда видно, что квадрат В₂Е₁ равен сумме квадратов АВ₁ и ВЕ₁. Поэтому искомый угол равен 90 градусов.

(309k баллов)