В треугольнике АВС проведены биссектрисы СФ и АД. Найдите отношение площадей...

0 голосов
79 просмотров

В треугольнике АВС проведены биссектрисы СФ и АД. Найдите отношение площадей треугольников АФД и АВС, если АВ : АС : ВС равно 21:28:20.


Геометрия (20 баллов) | 79 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

АВ=21х, АС=28х, ВС=20х
По свойству биссектрисы:
АВ/ВД=АС/СД или ВД/СД=АВ/АС=21/28=3/4
ВС=ВД+СД=ВД+4ВД/3=7ВД/3
АС/АФ=ВС/ВФ или АФ/ВФ=АС/ВС=28/20=7/5
АВ=АФ+ВФ=АФ+5АФ/7=12АФ/7
ΔАВС и ΔАВД имеют одинаковые высоты, опущенные из вершины А, значит отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) Sавс/Sавд=ВС/ВД=7ВД/3 / ВД=7/3
Sавс=7Sавд/3
Также ΔАФД и ΔАВД имеют одинаковые высоты, опущенные из вершины Д, значит  Sавд/Sафд=АВ/АФ=12АФ/7 / АФ=12/7
Sафд=7Sавд/12
Отношение Sафд/Sавс=7Sавд/12 / 7Sавд/3=1/4

(101k баллов)